Weakly Nucleophilic Conjugate Bases of Superacids as Powerful Nucleophiles in Vinylic Bimolecular Nucleophilic Substitutions of Simple β-Alkylvinyl(aryl)- λ^{3}-bromanes

Masahito Ochiai,* Takuji Okubo, and Kazunori Miyamoto
Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan

Abstract

We report herein, for the first time, the stereoselective synthesis of simple (E)- β-alkylvinyl (aryl) $-\lambda^{3}$ bromanes via a boron- λ^{3}-bromane exchange reaction and their unique bimolecular nucleophilic substitutions at the vinylic ipso carbon atom under mild conditions. Interestingly, even weakly nucleophilic anions such as conjugate bases of superacids $\left(\mathrm{HBF}_{4}, \mathrm{TfOH}, \mathrm{Tf}_{2} \mathrm{CH}_{2}, \mathrm{Tf}_{3} \mathrm{CH}, \mathrm{Tf}_{2} \mathrm{NH}\right.$, etc.) function as nucleophiles toward the vinyl $-\lambda^{3}$-bromanes. For instance, the vinylic $S_{\mathrm{N}} 2$ reaction of (E)-vinyl- λ^{3}-bromanes with potassium bis(triflyl)methanide stereoselectively produced (Z)-vinyloxy oxosulfonium ylides with exclusive inversion of configuration via oxygen attack, while that with potassium bis(triflyl)imide afforded predominantly (Z)-vinyloxysulfoximines. In marked contrast, (E)- β-alkylvinyl- λ^{3}-iodanes do not undergo the vinylic $\mathrm{S}_{\mathrm{N}} 2$ reaction with these conjugate bases of superacids. The differences between the nucleofugalities of aryl- λ^{3}-iodanyl and aryl $-\lambda^{3}$-bromanyl groups (the latter being greater) probably play a pivotal role in these unique reactions.

Bimolecular nucleophilic substitution at an sp^{2} vinylic carbon atom $\left(\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}\right.$ reaction $)$, in which a nucleophile attacks the σ^{*} orbital of the $\mathrm{C}_{\text {vinylic }}$-LG bond from the side opposite the leaving group (LG) to give an inverted product, has been considered to be a high-energy process and for a long time has been excluded as a viable pathway on both theoretical and experimental grounds. ${ }^{1}$ A unique but unambiguous example of intermolecular $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ displacement ${ }^{2}$ relies heavily on the use of a highly powerful hypernucleofuge such as a phenyl $-\lambda^{3}$-iodanyl group, ${ }^{3}$ which is a better LG than superleaving triflate. ${ }^{4}$

On the other hand, in the intramolecular version, even a common nucleofuge such as bromide can serve as a good LG: ${ }^{5}$ for instance, 2-bromobut-2-enylamines cyclize to 2-ethyleneaziridines via base-induced nucleophilic substitutions with stereochemical inversion at the vinylic carbon atom. These reactions, however, cannot be applied to the intermolecular $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ displacement because of the modest nucleofugality of the LG. It occurred to us that instead of bromine, use of hypervalent λ^{3}-bromanes as LGs with an increased nucleofugality ${ }^{6}$ would make possible the realization of an intermolecular $S_{N} 2 V$ version. We report herein, for the first time, the stereoselective synthesis of highly active (E)- β-alkylvinyl(aryl)- λ^{3}-bromanes 3 via boron- λ^{3}-bromane exchange and their facile bimolecular nucleophilic substitutions at the vinylic ipso carbon atom under mild conditions. Much to our surprise, even weakly nucleophilic anions
such as the conjugate bases of superacids ${ }^{7}$ function as nucleophiles toward vinyl $-\lambda^{3}$-bromanes 3 . The vastly enhanced nucleofugality of aryl $-\lambda^{3}$-bromanyl groups in comparison with aryl $-\lambda^{3}$-iodanyl groups is a driving force for the unique $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ reactions. ${ }^{6}$
(E)-1-Decenyl(p-trifluoromethylphenyl)- λ^{3}-bromane (3a) was prepared stereoselectively via the ligand exchange reaction of the Frohn reagent $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrF}_{2}{ }^{8}$ on $\mathrm{Br}(\mathrm{III})$ with (E)-1decenyldifluoroborane (2a) [2 equiv; generated in situ from potassium decenylborate ($\mathbf{1 a}$) by the reaction with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at low temperature in a Teflon PFA vessel under argon ${ }^{9}$] in dichloromethane at $-78{ }^{\circ} \mathrm{C}$ for 1 h (Scheme 1). ${ }^{10}$ After removal of precipitated KBF_{4} by rapid filtration at $0^{\circ} \mathrm{C}$, evaporation of dichloromethane in vacuo at $-30^{\circ} \mathrm{C}$ followed by repeated decantation with pentane at $-78^{\circ} \mathrm{C}$ afforded (E)-vinyl- λ^{3}-bromane 3 a as an amorphous solid in 85% yield. All of the vinyl- λ^{3}-bromanes $3 a-c$ synthesized are thermally labile at ambient temperature and moisture-sensitive; hence, their yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-40^{\circ} \mathrm{C}$ with 1,1,2,2-tetrachloroethane as an internal standard. In CDCl_{3} solution at $0{ }^{\circ} \mathrm{C}$, 3a gradually decomposed to a mixture of inverted (Z)-1decenyl fluoride (6) and $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ with a half-life $\left(t_{1 / 2}\right)$ of 23 min, probably via $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ reaction with $\mathrm{BF}_{4}{ }^{-}$anion (see Scheme S1 and Figure S1 in the Supporting Information). ${ }^{11}$ In the solid state, however, bromane 3a can be stored at $-78{ }^{\circ} \mathrm{C}$ for several weeks without any decomposition.

Large vicinal coupling constants of $12.3-12.4 \mathrm{~Hz}$ between the vinylic protons of λ^{3}-bromanes $3\left(\mathrm{CDCl}_{3} /-40^{\circ} \mathrm{C}\right)$ indicate exclusive retention of stereochemistry during the boron- λ^{3}-bromane exchange reaction. These coupling constants for 3 are smaller than the value of 13.7 Hz for a λ^{3}-iodane analogue, (E)-1-decenyl(phenyl)(tetrafluoroborato) $-\lambda^{3}$-iodane (4), ${ }^{12}$ probably reflecting the greater electron-withdrawing power of phenyl- λ^{3}-bromanyl groups than of phenyl $-\lambda^{3}$-iodanyl groups. ${ }^{13,14}$ ESI-MS data for 3a acquired in positive-ion mode in chloroform revealed prominent ion peaks derived from monomeric, dimeric, and trimeric species at m / z 363,813 , and 1267 , respectively (see Figure S2). ${ }^{15}$

Upon exposure to excess amounts of potassium triflate, a conjugate base of superacidic TfOH with H_{0} acidity of -14.1 (see Scheme S2), ${ }^{16}$ in dichloromethane at $-78{ }^{\circ} \mathrm{C}$ to room temperature, alkenyl- λ^{3}-bromane 3 a underwent an $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ reaction and afforded inverted (Z)-vinyl triflate 5 stereoselectively in 54% yield along with another $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ product, 6 (41\%) (Scheme 2). In marked contrast, (E)-decenyl- λ^{3}-iodane 4 did not undergo the vinylic $S_{N} 2$ reaction under these conditions because of the weak nucleophilicities of triflate and borate anions (see Scheme S3). Use of trimethylsilyl

[^0]Scheme 1

Scheme 2^{a}

$$
\begin{array}{lcccc}
\text { 3a } \begin{array}{ccc}
\mathrm{CH}_{2} \mathrm{Cl}_{2} & & n-\mathrm{C}_{8} \mathrm{H}_{17} \\
\hline-78{ }^{\circ} \mathrm{C} \text { to rt (4 h) } & & +\quad n-\mathrm{C}_{8} \mathrm{H}_{17} \\
& \text { 5: } \mathrm{X}=\mathrm{OTf} & 6: \mathrm{X}=\mathrm{F}
\end{array} \\
& 54 \% & 41 \% & 7 \\
\text { KOTf (5 equiv) } & 54 \% & 5 \% \\
\text { TMSOTf (3 equiv) } & 72 \% & 6 \% & 7 \%
\end{array}
$$

${ }^{a}$ GC yields.

Table 1. $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ Reaction with Perfluoroalkanesulfonylmethanide Anions ${ }^{a}$

			$\frac{\mathrm{CH}_{2} \mathrm{Cl}_{2}}{-78^{\circ} \mathrm{C} \text { to rt }(4 \mathrm{~h})}$		R_{f} $\mathrm{SO}_{2} \mathrm{R}_{\mathrm{f}}$
entry	3	R_{f}	R^{\prime}	8	yield (\%) ${ }^{\text {b }}$
1	3a	CF_{3}	H	8a	81
2	3b	CF_{3}	H	8b	84
3	3 c	CF_{3}	H	8 c	$43^{\text {c }}$
4	3a	$n-\mathrm{C}_{4} \mathrm{~F}_{9}$	H	8d	93
5	3b	$n-\mathrm{C}_{4} \mathrm{~F}_{9}$	H	8 e	68 (77)
6	3c	$n-\mathrm{C}_{4} \mathrm{~F}_{9}$	H	8 f	31^{c}
7	3a	CF_{3}	$\mathrm{CF}_{3} \mathrm{SO}_{2}{ }^{\text {d }}$	8 g	49 (80)

${ }^{a}$ Conditions: 3/potassium sulfonylmethanide (5 equiv)/Ar. ${ }^{b}$ Isolated yields. Numbers in parentheses are ${ }^{1} \mathrm{H}$ NMR yields. ${ }^{c}$ 3,3-Dimethyl-1butyne (38% for entry 3 and 15% for entry 6) was produced. ${ }^{d} \operatorname{KCTf}_{3}$ (10 equiv) was used.
triflate, which can capture fluoride from weak fluoride donors with formation of TMSF, markedly increased the selectivity for formation of (Z)-vinyl triflate 5 (72%).

Interestingly, superstrong CH acids with two perfluoroalkanesulfonyl groups ${ }^{16}$ provide efficient nucleophiles for the substitution reactions of 3 (Table 1). Thus, reaction of 3a with potassium bis(triflyl)methanide in dichloromethane at $-78{ }^{\circ} \mathrm{C}$ to room temperature stereoselectively afforded a new type of (Z)-vinyl sulfinate derivative, oxosulfonium ylide 8a, in 81% yield with exclusive inversion of configuration (entry 1). Ylide 8a was produced via O-attack of the ambident methanide anion, and no formation of the C-attack product was detected. This is in marked contrast to the reported preferential C -alkylation of $\mathrm{Tf}_{2} \mathrm{CHMgCl}$ in the reaction with allyl bromide and benzyl chloride. ${ }^{17}$ The unique structure of (Z)-ylide 8a was identified by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR and MS spectral analyses, especially by (1) two peaks with $1: 1$ intensity at -75.6 and -80.5 ppm in the ${ }^{19} \mathrm{~F}$ NMR spectrum, indicating the presence of different kinds of CF_{3} groups, and (2) a small vicinal coupling constant of 5.6 Hz between the vinylic protons and a sharp

Table 2. $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ Reaction with $\operatorname{Bis}($ perfluoroalkanesulfonyl)imide Anions ${ }^{a}$

$3+K N$		$\xrightarrow[\substack{-78{ }^{\circ} \mathrm{C} \text { to rt } \\(4 \mathrm{~h})}]{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$		
				yield ${ }^{\text {b }}$)
entry	3	R_{f}	9	10
1	3a	CF_{3}	9a (68)	10a (8)
2	3b	CF_{3}	9 b (50)	10b (7)
3	3c	CF_{3}	9c (32)	10c (-)
4	3a	$n-\mathrm{C}_{4} \mathrm{~F}_{9}$	9d (73)	10d (6)
5	3b	$n-\mathrm{C}_{4} \mathrm{~F}_{9}$	9 e (74)	10e (6)
6	3a	$\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2}\right)$	9 f (56)	10 f (12)
7	3b	$\left(\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2}\right)$	9g (43)	10 g (3)

${ }^{a}$ Conditions: $3 /$ potassium sulfonylimide (5 equiv)/Ar. ${ }^{b}$ Isolated yields.
${ }^{c 1}$ H NMR yields. ${ }^{d}$ 3,3-Dimethyl-1-butyne (18%) was produced.
singlet peak at 4.25 ppm assigned to the hydrogen atom attached to the ylidic $\mathrm{C}=\mathrm{S}$ bond in the ${ }^{1} \mathrm{H}$ NMR spectrum (see Scheme S 4). ${ }^{18}$ Potassium bis(nonaflyl)methanide also afforded (Z)-ylide $\mathbf{8 d}$ selectively in high yield (entry 4). The presence of a sterically demanding β-tert-butyl group in (E)-alkenyl(phenyl)- λ^{3}-iodanes completely inhibits the $S_{\mathrm{N}} 2$ displacement with halide anions but instead results in syn β-elimination, yielding a terminal alkyne; ${ }^{2}$ however, tert-butylvinyl- λ^{3}-bromane $3 c$ did undergo the $S_{\mathrm{N}} 2 \mathrm{~V}$ reaction with bis (sulfonyl)methanide anions and afforded (Z)-sulfinates 8 c and 8f, albeit in moderate yields. Unique but highly labile bis(triflyl)oxosulfonium ylide 8 g was produced by the reaction of 3 a with O-nucleophilic tris(triflyl)methanide anion (entry 7). ${ }^{19}$

Potassium salts of bis(sulfonyl)imide superacids function as ambident nucleophiles in the $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ reaction and afforded a mixture of O - and N -attack products (Table 2). Thus, exposure of 3 a to KNTf_{2} gave inverted (Z)-N-triflylsulfoximine 9 a as the major product via predominant O -attack of the imide anion, along with a small amount of (Z)-enimide 10a (entry 1). Comparable results were obtained in the reaction with nonaflyl and cyclic potassium salts (entries 4-7). A similar preference for O-phenylation over N -phenylation has been reported in the $\mathrm{S}_{\mathrm{N}} 1$-type thermolysis and photolysis of $\mathrm{PhN}_{2}{ }^{+} \mathrm{NTf}_{2}{ }^{-}$, which generates an active phenyl cation intermediate. ${ }^{20}{ }^{19} \mathrm{~F}$ NMR spectroscopy of $\mathbf{9 a}, \mathbf{9 b}, \mathbf{1 0 a}$, and $\mathbf{1 0 b}$ provided the most direct evidence for identification of these products, where the former pair exhibit two well-resolved singlets ($1: 1$ ratio) and the latter a slightly more deshielded singlet (see Scheme S4).

Conjugate anions of these CH and NH superacids did not undergo the vinylic $S_{N} 2$ reaction with vinyl $-\lambda^{3}$-iodane 4 , indicating greater activity of vinyl- λ^{3}-bromane 3 (see Scheme S3). Interestingly, $\mathrm{S}_{\mathrm{N}} 2 \mathrm{~V}$ displacement of 3 with halide anions ($\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) took place smoothly even at $-78{ }^{\circ} \mathrm{C}$ (see Table S1).

Since no method for the synthesis of (Z)-vinyloxy oxosulfonium ylides 8 and sulfoximines 9 has been available to date, only our unique vinylic $\mathrm{S}_{\mathrm{N}} 2$ strategy provides access to these compounds.

ASSOCIATED CONTENT

(s)
Supporting Information. Experimental details and supporting schemes, figures, and table. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

mochiai@ph.tokushima-u.ac.jp

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research (B) (JSPS). We thank Central Glass Co., Ltd. (Japan) for a generous gift of BrF_{3}.

- REFERENCES

(1) (a) Modena, G. Acc. Chem. Res. 1971, 4, 73. (b) Miller, S. I. Tetrahedron 1977, 33, 1211. (c) Rappoport, Z. Acc. Chem. Res. 1981, 14, 7. (d) Rappoport, Z. Recl. Trav. Chim. Pays-Bas 1985, 104, 309. (e) Kelsey, D. R.; Bergman, R. G. J. Am. Chem. Soc. 1971, 93, 1953.
(2) (a) Ochiai, M.; Oshima, K.; Masaki, Y. J. Am. Chem. Soc. 1991, 113, 7059. (b) Okuyama, T.; Takino, T.; Sato, K.; Ochiai, M. J. Am. Chem. Soc. 1998, 120, 2275. (c) Ochiai, M. J. Organomet. Chem. 2000, 611, 494. (d) Okuyama, T.; Lodder, G. Adv. Phys. Org. Chem. 2002, 37, 1.
(3) (a) Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc. 1995, 117, 3360.(b) Ochiai, M. In Chemistry of Hypervalent Compounds; Akiba, K.-y., Ed.; Wiley-VCH: New York, 1999; p 359.
(4) Stang, P.J.; Rappoport, Z.; Hanack, M.; Subramanian, L. R. Vinyl Cations; Academic Press: New York, 1979.
(5) (a) Shiers, J. J.; Shipman, M.; Hayes, J. F.; Slawin, A. M. Z. J. Am. Chem. Soc. 2004, 126, 6868. (b) Ando, K.; Kitamura, M.; Miura, K.; Narasaka, K. Org. Lett. 2004, 6, 2461. (c) Miyauchi, H.; Chiba, S.; Fukamizu, K.; Ando, K.; Narasaka, K. Tetrahedron 2007, 63, 5940.
(6) Ochiai, M.; Tada, N.; Okada, T.; Sota, A.; Miyamoto, K. J. Am. Chem. Soc. 2008, 130, 2118.
(7) Reed, C. A. Acc. Chem. Res. 1998, 31, 133.
(8) (a) Frohn, H.J.; Giesen, M. J. Fluorine Chem. 1998, 89, 59. (b)

Ochiai, M.; Nishi, Y.; Goto, S.; Shiro, M.; Frohn, H.-J. J. Am. Chem. Soc. 2003, 125, 15304. (c) Ochiai, M.; Yoshimura, A.; Mori, T.; Nishi, Y.; Hirobe, M. J. Am. Chem. Soc. 2008, 130, 3742.
(9) (a) Bardin, V. V.; Adonin, N. Yu.; Frohn, H.-J. J. Fluorine Chem. 2007, 128, 699. (b) Frohn, H.-J.; Hirschberg, M. E.; Wenda, A.; Bardin, V. V. J. Fluorine Chem. 2008, 129, 459.
(10) For the synthesis of β-haloalkenyl λ^{3}-bromanes, see: (a) Ochiai, M.; Nishi, Y.; Mori, T.; Tada, N.; Suefuji, T.; Frohn, H.-J. J. Am. Chem. Soc. 2005, 127, 10460. (b) Miyamoto, K.; Shiro, M.; Ochiai, M. Angew. Chem., Int. Ed. 2009, 48, 8931. (c) Prakash, G. K. S.; Bruce, M. R.; Olah, G. A. J. Org. Chem. 1985, 50, 2405.
(11) Okuyama, T.; Fujita, M.; Gronheid, R.; Lodder, G. Tetrahedron Lett. 2000, 41, 5125.
(12) Ochiai, M.; Sumi, K.; Takaoka, Y.; Kunishima, M.; Nagao, Y.; Shiro, M.; Fujita, E. Tetrahedron 1988, 44, 4095.
(13) For a greater Hammett substituent constant for $\mathrm{PhBrBF}_{4}\left(\sigma_{\mathrm{P}}=\right.$ 1.63) than for $\mathrm{PhIBF}_{4}\left(\sigma_{\mathrm{p}}=1.37\right)$, see: Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P.; Galakhov, M. V.; Bakhmutov, V. I. Organomet. Chem. USSR 1989, 2, 373.
(14) Schaefer, T. Can. J. Chem. 1962, 40, 1.
(15) A similar dimeric structure of (Z)-(2-bromodecenyl)(phenyl)-bromo- λ^{3}-iodane in chloroform solution was reported. See: Ochiai, M.; Kida, M.; Sato, K.; Takino, T.; Goto, S.; Donkai, N.; Okuyama, T. Tetrahedron Lett. 1999, 40, 1559.
(16) (a) Koppel, I. A.; Burk, P.; Koppel, I.; Leito, I.; Sonoda, T.; Mishima, M. J. Am. Chem. Soc. 2000, 122, 5114. (b) Koppel, I. A.; Taft, R. W.; Anvia, F.; Zhu, S.-Z.; Hu, L.-Q.; Sung, K.-S.; DesMarteau, D. D.; Yagupolskii, L. M.; Yagupolskii, Y. L.; Ignatev, N. V.; Kondratenko, N. V.; Volkonskii, A. Y.; Vlasov, V. M.; Notario, R.; Maria, P.-C. J. Am. Chem. Soc. 1994, 116, 3047.
(17) Koshar, R. J.; Mitsch, R. A. J. Org. Chem. 1973, 38, 3358.
(18) Ishihara, K.; Hasegawa, A.; Yamamoto, H. J. Fluorine Chem. 2000, 106, 139.
(19) For the synthesis of $\operatorname{PhOS}(\mathrm{O})\left(\mathrm{CF}_{3}\right)=\mathrm{CTf}_{2}$, see: (a) Yagupolskii, Y. L.; Pavlenko, N. V.; Yurev, I. I.; Iksanova, S. V. Zh. Org. Khim. USSR 1990, 26, 682. (b) Zhu, S.-Z.; DesMarteau, D. D. Inorg. Chem. 1993, 32, 223.
(20) (a) Haas, A.; Yagupolskii, Y. L.; Klare, C. Mendeleev Commun. 1992, 70. (b) Laali, K. K.; Okazaki, T.; Bunge, S. D. J. Org. Chem. 2007, 72, 6758.

[^0]: Received: January 17, 2011
 Published: February 22, 2011

